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A B S T R A C T

Purpose: To train a CycleGAN on downscaled versions of mammographic data to artificially inject or remove
suspicious features, and to determine whether these AI-mediated attacks can be detected by radiologists.
Material and Methods: From two publicly available datasets, BCDR and INbreast, we selected 680 images with
and without lesions as training data. An internal dataset (n=302 cancers, n=590 controls) served as test data.
We ran two experiments (256× 256 px and 512×408 px) and applied the trained model to the test data. Three
radiologists read a set of images (modified and originals) and rated the presence of suspicious lesions on a scale
from 1 to 5 and the likelihood of the image being manipulated. The readout was evaluated by multiple reader
multiple case receiver operating characteristics (MRMC-ROC) analysis using the area under the curve (AUC).
Results: At the lower resolution, the overall performance was not affected by the CycleGAN modifications (AUC
0.70 vs. 0.76, p= 0.67). However, one radiologist exhibited lower detection of cancer (0.85 vs 0.63, p=0.06).
The radiologists could not discriminate between original and modified images (0.55, p= 0.45). At the higher
resolution, all radiologists showed significantly lower detection rate of cancer in the modified images (0.80 vs.
0.37, p < 0.001), however, they were able to detect modified images due to better visibility of artifacts (0.94,
p < 0.0001).
Conclusion: Our proof-of-concept study shows that CycleGAN can implicitly learn suspicious features and arti-
ficially inject or remove them in existing images. The applicability of the method is currently limited by the small
image size and introduction of artifacts.

1. Introduction

Machine learning (ML) in medical imaging is a promising field of
research, which will bring substantial changes to radiology in the
coming years. Many ML studies focus on (semi) automated detection
[1] or classification of cancer [2]. Most advanced ML algorithms are
fundamentally opaque and as they, inevitably, find their way onto
medical imaging devices and clinical workstations, we need to be aware
that they may also be used to manipulate raw data and enable new
ways of cyber-attacks, possibly harming patients and disrupting clinical
imaging service [3].

One specific genre of ML algorithms, Generative Adversarial

Networks (GANs), are of particular importance in this context. GANs
are a subclass of deep learning algorithms, itself a class of algorithms
within the realm of ML or artificial intelligence (AI) [4]. A GAN consists
of two neural networks competing against each other: The first, a
generator network (G), manipulates sample images and the second, a
discriminator network (D), has to distinguish between real and ma-
nipulated samples [5]. Due to their opposed cost function, the neural
networks are competing against each other in order to improve their
performance (in game theory this scenario is known as a “two-person
zero-sum game” [6]). Given infinite resources and time, this will the-
oretically result in G producing samples from the real image distribu-
tion (i.e. perfect manipulations) and D incapable of discriminating,
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giving each such a sample a probability of 0.5 of being either ma-
nipulated or real.

On one hand, this technique may be leveraged to isolate features of
the disease and either to improve our understanding of suspicious
imaging features or for teaching purposes. On the other hand, for our
use-case, we hypothesized that a GAN can learn an implicit re-
presentation of what suspicious lesions in mammography look like, and
alter images, so they would be misdiagnosed (normal as suspicious and
vice versa) without raising a suspicion of artificial manipulation. Hence,
the purpose of this study was to train a pair of GANs on mammographic
data to inject or remove suspicious features and determine whether
these AI-mediated attacks can be detected by radiologists.

2. Methods

All used data were either publicly available [7,8] or had received
prior approval for retrospective study from the local ethics committee,
who waived the need for informed consent [1].

2.1. Patient Cohorts/Datasets

From two publicly available datasets, BCDR [7] and INbreast [8],
680 mammographic images from 334 patients were selected, 318 of
which exhibited potentially cancerous masses, and 362 were negative
controls. We used all INbreast cases with BI-RADS 3 or greater as cancer
cases, and all cases with a focal lesion and marked as “malignant” from
BCDR. In the first experiment, a set of images were set aside (‘evalua-
tion dataset’) and used in the empirical assessment and evaluation,
these images were not used to train the networks (15% randomly se-
lected images). In addition, as a test dataset for experiment two (see
below), we used images from a private dataset previously published in
[1] (302 cancer / 590 healthy). These images were withheld from the
network during the training process and only used in the last step to
generate images for the readout and test how well the network gen-
eralizes to new, unseen images. Reference standard for the in-house
dataset was biopsy/histopathology for malignancies and biopsy or> 2
years of follow-up for benign findings [1]. The reference standard for
BCDR and INbreast was similarly defined and is described in the re-
spective original publications [7,8].

2.2. GAN model selection and adaptation

We view the task of injecting and removing malignant features as an
image-to-image translation problem in the spirit of the recently pro-
posed cycle-consistent GANs model (CycleGAN) [9], which aim to
translate images from one distribution, e.g. normal mammograms, to
another distribution, e.g. mammograms with cancer, and vice versa. We
trained CycleGAN, using two pairs of generator and discriminator
networks to convert suspicious breast images to normal images and
back to suspicious images. Similarly, the negative controls were con-
verted to suspicious images and then back to negative/normal images.

2.2.1. First experiment
The CycleGAN architecture was implemented in TensorFlow v1.5

[10]. A schematic of the generator network architecture is shown in
Fig. 1. The discriminator network was a simple convolutional network
with four layers. Images were rescaled to 256×256 px, normalized
between −1 and +1, and augmented ten-fold by random rotation,
scaling, and contrast perturbations. These are standard techniques in
order to make training more memory efficient (rescaling), faster (nor-
malization) and more robust (augmentation). The training was per-
formed on a consumer-grade personal computer (PC) with an Nvidia
(Nvidia Corp., Santa Clara, CA, USA) GeForce GTX 1070 graphics
processing unit (GPU). To facilitate reproducibility and possible ex-
tension of our results by others, we provide the code, along with ac-
companying toy data, for the first experiment in the online repository

github.com/BreastGAN/experiment1. It contains all the relevant hy-
perparameters and was designed to run out-of-the-box via Docker. We
trained the network for a maximum of 160k training steps. The trained
CycleGAN was applied to all the test images, after appropriately scaling
them to 256× 256 pixels.

2.2.2. Second experiment
This experiment was designed and conducted after the first readout

in order to further test the limits of CycleGAN. We increased the re-
solution of the images to 512×408 p× . After an initial test run with
satisfactory results, we decided to proceed without data augmentation.
Due to the increased image size, we used a GPU cluster consisting of
eight GeForce GTX TITAN X/Xp GPUs. We implemented CycleGAN in
Tensorflow v1.12.rc2 for this experiment, to match cluster require-
ments, and ran the network for 70k training steps. The code and syn-
thetic data for the second experiment can be found online: github.com/
BreastGAN/experiment2. As the first experiment, we then applied the
trained CycleGAN to all the test images after scaling their size appro-
priately.

2.3. Radiologist readout

2.3.1. First readout
From the first experiment, we randomly chose 30 modified and 30

original images, with 40 images in pairs (i.e. original and modified from
the same patient and side/view) and 20 unpaired images (i.e. different
patients). In half of the images, suspicious features had been added, in
the other half they had been removed. Only images with visible masses
at this resolution were considered from the original images from the
respective category. Hence, very dense breasts (American College of
Radiology (ACR) category D) were not selected. Breast density dis-
tribution for negative/suspicious mammographic images was 11/10 for
ACR cat. A, 5/9 for cat. B and 14/11 for cat. C, respectively. Median
approximate lesion diameter was 6.6 mm (range: 4.0–9.9mm). The
images were presented in random order to three radiologists (5 years of
experience for the two senior readers, both general radiologists, and
one PGY-6 fellow in oncologic imaging) who rated them on a 5-point
Likert-like scale for the likelihood of cancer (“how likely would you
recall this patient”) and also voted whether they believe the image was
genuine or artificially modified. In the first readout, this was a binary
indication. We did not use the BI-RADS classification due to the small
image size. The radiologists were not allowed to change their ratings
and were fully blinded to the purpose of the study and the distribution
of suspicious vs. negative cases, i.e. they were only informed that some
images had been modified “by the computer”. Reference standard for
analysis of the diagnostic performance was the original label of the
image, even if the image had been altered by the GAN aiming to “fool”
the radiologist.

2.3.2. Second readout
In the second readout, the readers knew the results of the initial

readout and that CycleGAN was used for the study. During training we
observed that artifacts seemed to get more pronounced due to the in-
creased image size, especially in the later stages of the training process
(see results section below). To also test this hypothesis, we presented
modified images generated after different number of training iterations
(35k and 70k) and let the readers rate the artificial artifacts on a 5-point
scale as well. No specific training to detect artifacts was performed.

The readers were again blinded to the distribution of samples. From
step 35k (half trained) we selected 12 negative and 12 suspicious
images (24 images total from the evaluation dataset, half trained) to
test for differences in artifact occurrence; from step 70k (fully trained)
we selected 24 negative and 24 suspicious images (48 images total from
evaluation and test dataset, fully trained). Half of the images were
modified and half of them were originals, and again half of them paired
and the other half unpaired. Hence, the total number of images for the
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second readout was 72 (36 suspicious / 36 negative) as summarized in
Fig. 2. Breast density distribution for negative/suspicious mammo-
graphic images was 16/15 for ACR cat. A, 12/13 for cat. B, 8/5 for cat.
C and 0/3 for cat. D, respectively. Median approximate lesion diameter
was 7.7mm (range: 3.8–10.0 mm).

2.4. Statistical analysis

Statistical analysis was performed using R v.3.4.4. (R Foundation for
Statistical Computing, Vienna, Austria). Continuous data were ex-
pressed as median and interquartile range (IQR). Categorical data were
given in absolute counts.

Detection accuracy was assessed with receiver operating char-
acteristic (ROC) and multiple reader multiple case (MRMC) analysis.
MRMC analysis was performed with iMRMC v. 4.0.0. ROC curves for
single readers were computed with the package pROC v.1.12.1. The
discriminatory performance of readers was expressed as the area under
the ROC curve (AUC). Averaged empirical AUC in MRMC were

compared using the procedure proposed by Gallas et al. [11], single
reader AUC were compared with DeLong’s non-parametric test [12].
We compared lesion detection on modified vs. original images, as well
as detection of CycleGAN-modifications compared to chance.

3. Results

3.1. First experiment

In a first experiment, we modified CycleGAN [9] to work with small
mammographic images (256×256 px) from the publicly available
datasets BCDR [7] and INBreast [8], running on a consumer grade PC.

Qualitatively, we noticed that at the beginning of the training,
during the initial iterations, the GAN started out by first adjusting
global features like contrast/brightness and then started removing or
adding glandular tissue early on, thus increasing the overall breast
density. Later, it would pick up skin-thickening as a suspicious feature.
Finally, it would apply more focal alterations like removing or adding
mass-like lesions, or morphing large, benign calcifications into fat or
soft tissue masses. In general, poorly circumscribed masses would be
preferentially placed on top of preexisting structures (either islets of
glandular breast tissue or benign findings). We noticed that after 160k
training iterations, grid-like or checkerboard-like artifacts became very
prominent in the generated images, making it fairly easy for humans to
spot the manipulated images. Hence, we went back to check the images
for less pronounced artifacts and loaded the network with weights be-
fore iteration 160k to generate the images for the first readout.

Lesion detection in modified images: MRMC analysis revealed no sig-
nificant overall difference in performance (AUC 0.70 vs. 0.76,
p=0.67). However, we found that in one of the experienced radi-
ologists, the modifications introduced by CycleGAN markedly reduced
diagnostic performance. The AUC of this reader dropped from 0.85 to
0.63 (p=0.06) in the modified images, with regard to the original
labels/classes, while the two other readers seemed unaffected, how-
ever, at a lower baseline performance (AUC 0.75 vs. 0.77 and 0.67 vs.
0.69, p= 0.55). Sensitivity and specificity were not significantly af-
fected for any of the readers, ranging between 0.60-0.80 (sens.) and
0.90 (spec.) for all readers in the original images, and between 0.70-
0.75 (sens.) and 0.60-0.95 (spec.), respectively.

Detection of CycleGAN-modifications: Overall, the readers could not
discern between original or modified image (AUC 0.55, p=0.45).
However, in the per-reader analysis, the abovementioned reader could
detect the CycleGAN modifications in some images (AUC=0.66,
p=0.008), whereas the two other readers did not perform better than
chance in this task (AUC=0.48 and 0.50, p=0.59 and 0.50).

3.2. Second experiment

Motivated by these somewhat contradictory results and a hint of
success in one reader, we set out to repeat the experiment at a higher
resolution. Due to the increased memory demand at the higher

Fig. 1. Schematic diagram of the architecture of the generator network (vanilla CycleGAN implementation). The discriminator network was a simple convolutional
neural network with four layers.

Fig. 2. Diagram illustrating the stratified image sampling for the second
readout (72 images total). The stratification was similar for the first readout,
without additional categorization into half and fully trained.
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resolution (512× 408 px), we ran our experiments on a dedicated GPU
cluster. To test how well the network generalized to new, unseen data,
we used an additional, internal test dataset from a prior study [1],
which was withheld during training.

On inspection of the training monitoring, we noticed the same
learning pattern as the first time, however, the gridlike artifacts were
indeed more pronounced and seemed to increase already after 45–50k
training iterations. The total number of images for the second readout
was 72 (36 negative / 36 suspicious), a representative selection of
images is shown in Fig. 3.

Lesion detection in modified images: We found that for all radiologists,
the performance to discriminate between negative and suspicious (re-
ferencing the original image class) dropped significantly in modified
images (AUC 0.80 vs. 0.37, p < 0.001; individual AUCs given in
Table 1). Specificity was more affected than sensitivity (p < 0.001 vs.
0.04, as summarized in Table 1). A possible explanation for this is that
added lesions were generally more pronounced and looked more rea-
listic than removed ones, and artifacts after removal could still be in-
terpreted as architectural distortions (c.f. Fig. 4).

Detection of CycleGAN-modifications: However, all radiologists could
now reliably identify the modified images (AUC=0.94, p < 0.0001),
confirming our hypothesis that the artifacts were easier to identify at
higher resolution. Identification of modifications was different in nei-
ther images from the later training stages (AUC half vs. full
training=0.93 vs. 0.94, p=0.83) nor in the test dataset (evaluation
vs. test= 0.93 vs. 0.95, p=0.68), which did not confirm our hypoth-
esis that the GAN would produce less artifacts at earlier training stages
or in the training data (summarized in Table 2). Two representative
examples of image pairs with pronounced artifacts are shown in Fig. 4.

4. Discussion

In the present study, we investigated whether a GAN can inject or
remove suspicious features in a realistic way that would make modified
images indistinguishable from real ones, even for radiologists, and alter
the diagnosis. Our results indicate that while GANs can learn the ap-
pearance of suspicious lesions, the modification of images is currently
limited by the introduction of artifacts, and the size of the images is
limited by technical memory constraints.

In our initial experiment, it appeared that only one reader was in-
fluenced by the GAN modifications. After seeing a clear effect in all
readers in the 2nd readout, we think that this was an effect of the higher
baseline performance and not simply due to chance. The contradictory
results of the first readout may also be due to different susceptibility of

Fig. 3. Representative examples of original (left) and CycleGAN-modified
images (right) from the second experiment. The top two rows are small re-
presentations of originally negative mammographic images with injected sus-
picious lesions, the bottom two rows are images with actual suspicious lesions,
which were removed by CycleGAN. Note how in the top examples (negative to
cancer), the GAN uses existing features in the image to modify in order to look
suspicious (islet of breast tissue and benign macrocalcifications, respectively).

Table 1
Results of the ROC analysis comparing the detection of suspicious lesions in
unmodified (original) and modified images in the second experiment. Note a
significant performance drop in the modified images for all readers meaning the
network succeeded to fool the reader in a substantial amount of cases.
ROC= receiver operating characteristics, AUC= area under the ROC curve,
Avg. = averaged AUC (MRMC). * combined p-values using the sum-z
(Stouffer’s) method.

AUC originals AUC modified p-value

Avg. 0.80 0.63 <0.001
Reader 1 0.78 0.69
Reader 2 0.77 0.59
Reader 3 0.84 0.60

Sensitivity orig. Sens. mod. 0.04*
Reader 1 0.78 0.83 0.31
Reader 2 0.89 0.72 0.10
Reader 3 0.83 0.78 0.10

Specificity orig. Spec. mod. <0.001*
Reader 1 0.61 0.33 0.01
Reader 2 0.55 0.44 0.05
Reader 3 0.78 0.33 0.01
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the readers to ‘high-frequency’ signals (i.e. edges and subtle textures),
which have been shown to be important in the ‘gist perception’ of
mammographies, i.e. the first impression when viewing the image for
the initial fractions of the first second [13]. The lower resolution used in
the first experiment entails a loss of those signals.

In the past decades, computers have become an integral part of all
clinical workflows in modern healthcare systems. This brings great
advantages on one hand, i.e. better documentation, more efficient
workflows [14] or new discoveries in research [15], but on the other
hand, the system becomes dependent on computers and will inevitably
take over some of their inherent weaknesses. The fact that such sce-
narios are beyond hypothetical deliberations has painfully become
apparent in the recent cases where patient information in whole

hospital systems was encrypted and thus rendered inaccessible by at-
tackers who demanded a ransom payment for decryption (this parti-
cular kind of attack is called “ransomware”) [16]. Moreover, these
potential threats are clearly not only limited to healthcare: For example,
a government investigation concluded that in the past 2016 U.S. pre-
sidential election, cyber warfare may have played a role in swaying the
results in favor of a particular candidate [17].

Methods of prevention against such attacks is an important and
active area of research [18]. While the need for security during storage
is self-evident, our results stress the importance of security during re-
trieval and processing as well. To the best of our knowledge, at the
moment there is no established solution for identifying artificial mod-
ifications in images made by GANs or other generative deep learning
techniques. This is partly due to the fact that humans are still able to
identify such generated images, even for most advanced models [19].
However, it is not far-fetched to think that these methods will soon
generate images indistinguishable from reality. This article points out
to this possibility for radiological images and we hope advances in
prevention technologies will follow.

All modalities in a modern medical imaging department rely heavily
on computers and networks, making them a prime target for cyber-
attacks [3]. As machine learning or artificial intelligence (AI) algo-
rithms will increasingly be used in the clinical routine, whether to re-
duce the radiation burden by reconstructing images from low-dose raw
data [20,21], optimal patient positioning [22], or help diagnose dis-
eases [1,23–25], their widespread implantation would also render them
attractive targets for attacks. Exploiting vulnerabilities of deep neural
networks is becoming an established field of research, yielding inter-
esting results like the “one-pixel attack” [26], where an attacking
neural network only modifies one pixel in order for the image to be
misclassified. Evidently though, such an attack would not be able to
fool a human observer. Hence, an important aspect of GANs is that they
may in the future be able to produce realistic examples which could
mislead human observers as well as machine algorithms [27]. Re-
garding medical imaging, we can imagine two categories of attacks:
focused and generalized attacks. In a focused attack, an algorithm
would be altered so it would misdiagnose a targeted person (e.g. poli-
tical candidate or company executive) in order to achieve a certain goal
(e.g. manipulation of election or hostile company takeover). In a gen-
eralized attack, a great number of devices would be infected with the
malicious algorithm lying dormant most of the time and stochastically
leading to a certain number of misdiagnoses, causing potentially fatal
outcomes for the affected patients, increased cost for the whole
healthcare system and — ultimately — undermining the public trust in
the healthcare system. At the time of writing, however, we would argue
that the technology is not yet advanced enough to make the threat of
such an attack imminent. However, we think this matter deserves at-
tention and further investigation in order to secure software/algorithms
and hardware, before technology catches up.

It is worth pointing out that there are also many other possible
applications of GANs apart from cyber-attacks. In a recent study, the
authors investigated the use of GAN to identify features important for
estimating the severity of congestive heart failure in a chest x-ray ex-
amination [28] and highlighting changes due to Alzheimer’s disease
[29]. Hence, GANs could be used either to discover new imaging fea-
tures of a disease, for teaching purposes, or to detect biases and con-
founders in training datasets. Furthermore, many datasets, especially in
a screening setting, are highly unbalanced, i.e. the cases of healthy
individuals far outweigh the ones with cancer. GANs could be used to
create more balanced datasets and thus facilitate training of other ML
algorithms.

There are several limitations that also need to be mentioned. First,
the introduction of grid or checkerboard artifacts as seen in our dataset
is a known problem in GANs, which is related to upsampling [30]. We
attribute these more perceptible artifacts at the higher resolution to two
reasons: First, the higher resolution allows for finer textures and details,

Fig. 4. Examples of images with artifacts from the second experiment/readout.
Left column: Originals, right column: modified images; top row: Lesion re-
moval, bottom row: lesion addition. Note the added artifacts in the surrounding
parenchyma as well as around the edges of the skin.

Table 2
ROC analysis comparing the detection of modified images, i.e. the presence of
artificial artifacts. There were no significant differences between the different
subsets of data (evaluation vs. test set and half vs. fully trained), meaning
CycleGAN produced artifacts even in evaluation images and at early training
stages, i.e. halfway through the training process. ROC= receiver operating
characteristics, AUC= area under the ROC curve, Avg. = averaged AUC
(MRMC).

AUC evaluation AUC test p-value

Avg. 0.93 0.95 0.68
Reader 1 0.93 0.91
Reader 2 0.95 1.0
Reader 3 0.91 0.95

AUC full AUC half p-value
Avg. 0.93 0.94 0.83
Reader 1 0.93 0.93
Reader 2 1.00 0.93
Reader 3 0.90 0.95
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and thus will require more careful modifications by the GAN in order
not to distort the natural patterns occurring in the breast tissue. This is
naturally more difficult and not yet perfected in current approaches,
which are mostly demonstrated on much lower resolution images while
clinical mammographic images have a very high resolution, about two
orders of magnitude higher than the ones used in our experiments.
Second, although we combined two of the largest publicly available
datasets, they are still fairly small compared to datasets currently used
in computer vision research, such as the ImageNet database, containing
nearly 14.2 million images at the time of writing. The scarcity of data
may be the limiting factor for the task at hand [12], leading to over-
fitting and artifacts [30]. For future research, much larger databases
with mammographic images will be needed. Lastly, the different levels
of experience and training background of the readers may have affected
the results of the readout.

Increasing the size of the images brings another problem about: One
of the most important bottlenecks for deep learning experiments in
computer vision is memory. This is probably the biggest limitation of
the current study. Tackling this problem is non-trivial and an active
field of research. Hence, it is currently common practice in research to
resize the images to a low resolution to make training feasible. We were
left to choose between resizing the images, thus losing detail informa-
tion, or working with small patches of full field digital mammographic
images, thus losing global information. Since this was a proof-of-prin-
ciple study and we were interested in whether, how and where a GAN
would extract and insert features in the whole image, we chose the
former trade-off. The fact that a readout with a single image patch
would have been even less representative of the clinical routine was a
defining point in our choice of using small, resized versions, around 1/
50th the size of the full-size mammograms (about the size of two
passport size portraits). It needs to be noted that this low resolution
means our findings with CycleGAN are not directly applicable to the
clinical routine at this point. Compared to other images in radiology,
mammographic images have the highest resolution due to the need to
depict submillimeter microcalcifications. Although we could have used
lower resolution images such as CT or MRI for this pilot study, we
elected to use mammographic data for several reasons: First, the
modality has been well established for a long time as a tool for
screening and diagnostic workup, which means there are large amounts
of data available from different institutions, which enabled us to com-
pile a multi-center dataset. Second, its widespread use in screening
programs makes mammography an ideal candidate for increasing cost-
efficiency and performance of radiologists by ML-augmented reading
[31]. As the use of other modalities for cancer screening increases, e.g.
low-dose chest CT for lung cancer screening, their amenability to ML-
augmented reading as well as vulnerability to cyber-attacks should be
investigated as well. Although the results obtained in the current study
should in principle be transferable, other network architectures or en-
tirely different techniques will be needed for other modalities and
clinical problems.

In conclusion, we could show as a proof-of-concept that a CycleGAN
is capable of implicitly learning suspicious features and injecting or
removing them, however, the method is limited and currently has a
clear trade-off between manipulation of images and introduction of
artifacts. Nevertheless, this matter deserves further study in order to
shield future devices and software from AI-mediated attacks.
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